1.始終注意保持使用一致的單位制;
2求解前運行allsel命令
求解前運行allsel命令。要不然,某些已經劃分網格的實體而沒有被選擇,那么加在實體模型上加的荷載可能會沒有傳到nodes or elements上去;
3網格劃分問題
牢記《建模與分網指南》上有關建模的忠告。網格劃分影響模型是否可用,網格劃分影響計算結果的可接受程度;
自適應網格劃分(ADAPT)前必須查自適應網格劃分可用單元,在ansys中能夠自適應網格劃分的單元是有限的。
網格劃分完成后,必須檢查網格質量!權衡計算時間和計算精度的可接受程度,必要時應該refine網格
4 實體建模布爾運算
應用實體建模以及布爾運算(加、減、貼、交)的優勢解決建立復雜模型時的困難;但是,沒有把握時布爾運算將難以保證成功!
5 計算結果的可信度
一般來說,復雜有限元計算必須通過多人,多次,多種通用有限元軟件計算核對,互相檢驗,相互一致時才有比較可靠的計算結果。協同工作時必須對自己輸入數據高度負責,并且小組成員之間保持良好的溝通;有限元分析不是搞什么“英雄主義”,而需要多方面的質量保證措施。
6了解最終所需要的成果
建立模型之前,應該充分了解最終要求提交什么樣式的成果,這樣能形成良好的網格,早期良好的建模規劃對于后期成果整理有很大的幫助;
7 撰寫分析文檔
文檔與分析過程力求保持同步,有利于小組成員之間的溝通和模型的檢驗和查證;
8 熟悉命令
對沒有把握的命令應該先用簡單模型熟悉之,千萬不能抱有“撞大運”的想法;
9 多種單元共節點
不同單元使用共同節點時注意不同單元節點自由度匹配問題導致計算結果的正確與否(《建模與分網指南》P 8 )
三維梁單元和殼單元的節點自由度數一致,但是應該注意到三維梁單元的轉動自由度和 殼單元的轉動自由度的含義不一樣。殼的ROTZ不是真實的自由度,它與平面內旋轉剛度相聯系,在局部坐標中殼的單元剛度矩陣ROTZ對應的項為零,對此不能將梁與殼單元僅僅有一個節點相連,例外的是當shell43 or shell63(兩者都有keyopt(3)=2)的Allman旋轉剛度被激活時。
Solid65 單元和 shell63 單元相連,相應平動自由度的節點力會傳到實體塊單元上,但是shell63單元的轉動自由度的節點唯一則不會傳到相連的 solid65單元上。
10 查找文獻資料確定混凝土的材料參數輸入( Tb, concr, , , )
11 預測內存和磁盤空間
大型復雜模型(例如10萬個節點,非線性問題,多工況問題,1000步以上的瞬態分析等等)求解之前預測求解所需要的求解時間、內存和磁盤空間,使分析盡在掌握之中;
12 收斂問題
影響收斂(不收斂,或者收斂緩慢)的原因很多,《非線性分析指南》一書上有很多關于避免發生收斂問題的建議;
對于以下參數,可以試一試這些參數對收斂速度以及結果精度的影響
neqit = 6~25?
加載荷載步大小 = ?
接觸單元的實常數 = ? 例如接觸剛度的大小取值必須權衡計算結果精度(穿透大小)和收斂問題( 收斂時間 )兩者的可接受程度,需要經驗值或者試算;
13 啟動重分析
14 兩個相貫的薄壁圓筒建模,殼單元沒有公共節點
Element Connectivity Error, 8-Node Curved Shell Elements
In this image, the red stiffener was intended to be welded to the purple pipe. Note that the elements of the red stiffener do not match up with those on the pipe. There is no connection, and the meshing was done independently. This is due to a geometric modeling error by the user (me). There are superimposed curved lines where the interface is located. There should have been a shared line for the connection to have worked. I found this only because of careful examination of the model -- I had already run a stress analysis.
What to do about these error concerns? Read and think. Share and listen to ideas and concerns with others. Review your own work, and the work of your co-workers. (Recently an experienced co-worker who does not even do FEA work asked me if I had eliminated the added mass of water in pipes when evaluating shipping loads on a product. I hadn't. Eliminating the added mass got rid of a high-stress problem. These errors are very easy to make.) Be friendly. Communicate with other departments. Have a check list and design reviews. Never use FEA blindly, or believe the results of an analysis without some critical review. Accept a critical review without taking it personally. Develop a good understanding of the intent of the design codes that regulate your work. Consult an expert when it is appropriate. Pay attention to the ethics and standards of your professional association. Choose your employer wisely. (Some of these things you were supposed to have learned in Kindergarten, but life isn't always that simple.) #p#分頁標題#e#
解決方法:通過volumn建模形成相貫線,該方法建模使面相交處共線,xmesh后有公共nodes
15 選擇集的應用
為了利用選擇集cm / xsel的強大功能,可以合理定義線,面的實常數real屬性,為了選擇操作方便而賦予更多的單元實常數號,材料號
18 UPGEOM 和 MPCHG 的應用
! UPGEOM更新幾何形狀
!a.rst為計算結果文件名,最后一個為目錄
!這兩個參數應根據你的計算情況定
UPGEOM,1,LAST,LAST,NEW,rst,F:729
! MPCHG彈性模量恢復為真值
esel,s,mat,,3
mpchg,4,all
? You might be tempted to try to deactivate or reactivate elements by changing their material properties [ MPCHG ] ( Main Menu%26gt;Preprocessor%26gt;Material Props%26gt;Change Mat Num ).
However, you must proceed cautiously if you attempt such a procedure. The safeguards and restrictions that affect "killed" elements will not apply to elements that have their material properties changed in SOLUTION. (Element forces will not be automatically zeroed out;nor will strains, mass, specific heat, etc.) Many problems could result from careless use of MPCHG . For instance, if you reduce an element's stiffness to almost zero, but retain its mass, it could result in a singularity if subjected to acceleration or inertial effects.
One application of MPCHG would be in modeling construction sequences in which the strain history of a "born" element is maintained. Using MPCHG in such cases will enable you to capture the initial strain experienced by elements as they are fitted into the displaced nodal configuration
19 Ansys 中的坐標系統,使用各種坐標系時應該明白在各處理器中輸入輸出會受到那些坐標系的影響
整體和局部坐標系CSYS---用于定位幾何形狀參數的空間位置
顯示坐標系DSYS---用于幾何形狀參數的列表和顯示
節點坐標系---定義節點自由度方向和節點結果數據的方法。輸入數據時受到節點坐標系影響的有:約束自由度(方程),力,主(從)自由度;在/POST26中在節點坐標系下輸出文件和顯示的數據結果有:自由度解,節點荷載,反作用荷載;
Forces are defined in the nodal coordinate system. The positive directions of structural forces and moments are along and about the positive nodal axis directions. The node and the degree of freedom label corresponding to the force must be selected [ NSEL , DOFSEL ].
單元坐標系---每個單元都有自己的坐標系,單元坐標系用于確定材料特性主軸,加面壓力和和單元結果數據(如應力和應變)的輸出方向;ANSYS規定了單元坐標系的缺省方潁恍磯嗟ピ?加衚eyopts可用于修改單元坐標系的缺省方向;對于面和體單元而言,可以用ESYS命令將單元坐標系的方向調整到已定義的局部坐標系;
結果坐標系RSYS---用來列表、顯示或者在/POST1中將節點和單元結果轉換到特定的坐標系中。在/POST1中結果數據換算到結果坐標系(RSYS)下記錄。定義路徑時,可以用系列命令*GET, ACTSYS, ACTIVE,CSYS $ RSYS, ACTSYS使結果坐標系與激活的坐標系(用于定義路徑)相匹配
求解坐標系---大多數模型疊加技術(PSD,CQC,SRSS)是在求解坐標系中進行的,使用RSYS,SOLU命令來避免在結果坐標系中發生變換,使結果數據保持在求解坐標系中。
20 Ansys 5.7通過函數定義邊界條件
利用函數可以很簡單方便地定義復雜邊界條件和載荷(將邊界條件當作函數處理(即方程))。該特性是5.6 中介紹的表格化邊界條件的擴展功能。用戶可以創建大量函數并存儲起來,以便于將來使用。
5.6的表格化邊界條件(Tabular boundary conditions)
Tabular boundary conditions ( VALUE = % tabname %) are available only for structural (UX, UY, UZ, ROTX, ROTY, ROTZ) and temperature degree of freedom (TEMP) labels and are valid only in static ( ANTYPE ,STATIC) and full transient ( ANTYPE ,TRANS) analyses.
滯回曲線——位移加載
*DIM,dis,TABLE,9,1,,TIME, ,
DIS(1,0) = 0,1,2,3,4,5,6,7,8 #p#分頁標題#e#
DIS(1,1) = 0,3,0,-3,0,4,0,-4,0
D,22, , %DIS% , , , ,UZ, , , , ,
ansys 5.6 help files------- 2.6.3. Applying Loads Using TABLE Type Array Parameters
優點:
?? 將復雜載荷和邊界條件定義成基本變量和因變量的連續或非連續方程。
?? 提供創建和運用函數的極易操作的GUI 界面。
應用 :
?? 該特性適用于所有ANSYS家族產品。
?? 該特性適用于ANSYS程序的所有過程,支持TIME, TEMP, X, Y, Z, VELOCITY和PRESSURE等基本變量。
21 automatic time stepping
For nonlinear problems, automatic time stepping determines the amount of load increment between substeps
相關文章
- 2021-09-08BIM技術叢書Revit軟件應用系列Autodesk Revit族詳解 [
- 2021-09-08全國專業技術人員計算機應用能力考試用書 AutoCAD2004
- 2021-08-30從零開始AutoCAD 2014中文版機械制圖基礎培訓教程 [李
- 2021-08-30從零開始AutoCAD 2014中文版建筑制圖基礎培訓教程 [朱
- 2021-08-30電氣CAD實例教程AutoCAD 2010中文版 [左昉 等編著] 20
- 2021-08-30高等院校藝術設計案例教程中文版AutoCAD 建筑設計案例
- 2021-08-29環境藝術制圖AutoCAD [徐幼光 編著] 2013年PDF下載
- 2021-08-29機械AutoCAD 項目教程 第3版 [繆希偉 主編] 2012年PDF
- 2021-08-29機械制圖與AutoCAD [李志明 主編] 2014年PDF下載
- 2021-08-29機械制圖與AutoCAD [陶素連,周欽河 主編] 2013年PDF下