本文探討研究了模糊控制系統(tǒng)的結(jié)構(gòu)與穩(wěn)定性相關(guān)內(nèi)容。
采用經(jīng)典控制理論中成熟的解析方法分析和設(shè)計(jì)模 糊控制系統(tǒng)是發(fā)展模糊控制理論的一條重要途徑。系統(tǒng)地綜述和討論了其中兩個(gè)主要方向, 即模糊控制器的解析結(jié)構(gòu)和模糊控制系統(tǒng)的穩(wěn)定性分析的最新研究成果,并對(duì)今后的研究工作進(jìn)行了展望。
關(guān)鍵詞:模糊控制器,模糊控制系統(tǒng),解析結(jié)構(gòu),穩(wěn)定性分析
分類號(hào):TP 18
Analytical Fuzzy Control Theory: Structure and Stability Analysis of Fuzzy Control Systems
Ding Yongsheng
(East China University)
Ying Hao
(The University of Texas Medical Branch)
Ren Lihong Shao Shihuang
(East China University)
Abstract:Analysis and design of fuzzy control systems usi ng the mature analytical methods in classical control theory is an important way to develop fuzzy control theory. Recent research results of analytical analysis on structures of fuzzy controllers and stability of fuzzy control systems are o verviewed and discusse d systematically. The directions for future research are provided.
Key words:fuzzy controllers, fuzzy control systems, analy tical structure, stability analysis▲
1 引 言
模糊系統(tǒng)技術(shù)具有語(yǔ)詞計(jì)算和處理不精確性、不確定性和模糊信息的能力,近年來(lái)已被證明是解決許多實(shí)際復(fù)雜建模和控制問(wèn)題的一種有效方法。但是,目前許多模糊系統(tǒng)仍采用黑箱方法,這是因?yàn)槠浣Y(jié)構(gòu)的復(fù)雜性已成為傳統(tǒng)數(shù)學(xué)分析的主要障礙。這種黑箱方法與經(jīng)典控制理論中廣泛采用的基于解析技術(shù)的設(shè)計(jì)方法有很大不同,它既不能提供對(duì)模糊系統(tǒng)的解析洞察,也不能對(duì)系統(tǒng)特性和性能進(jìn)行有效的數(shù)學(xué)分析。這種缺陷會(huì)給其在許多領(lǐng)域的控制問(wèn)題應(yīng)用帶來(lái)不實(shí)際性和不安全性。
為了發(fā)展模糊控制理論并讓其具有堅(jiān)實(shí)的理論基礎(chǔ),解析方法已引起許多學(xué)者的重視。基于解析方法,經(jīng)典系統(tǒng)理論中許多成熟的方法能用于模糊系統(tǒng)的某些分析和設(shè)計(jì)。模糊控制器的解析結(jié)構(gòu)分析和模糊控制系統(tǒng)的穩(wěn)定性分析是其中兩個(gè)主要方向。本文將系統(tǒng)地綜述這兩個(gè)方向的最新研究成果,并對(duì)今后的研究工作進(jìn)行展望。
2 模糊控制系統(tǒng)組成
模糊控制器一般包括5部分:1)模糊化接口:將真實(shí)的確定量通過(guò)隸屬函數(shù)轉(zhuǎn)換成模糊量;2)數(shù)據(jù)庫(kù):用于存放輸入和輸出變量全部模糊子集的隸屬函數(shù);3)模糊規(guī)則集:以IF-THEN控制規(guī)則形式給出的信息,根據(jù)模糊規(guī)則形式,模糊控制器主要可分為Mamdani和Takagi- Sugeno(TS)兩類;4)模糊推理機(jī)構(gòu):基于模糊規(guī)則,采用模糊邏輯操作和推理方法而獲得模糊輸出;5)解模糊接口:用于將模糊輸出轉(zhuǎn)換成系統(tǒng)的數(shù)值輸出。
根據(jù)輸入和輸出變量的數(shù)目,可將模糊控制系統(tǒng)劃分為單變量和多變量模糊控制系統(tǒng)。絕大多數(shù)模糊系統(tǒng)都是復(fù)雜的非線性系統(tǒng),其輸入和輸出之間的非線性是由模糊控制器的上述各個(gè)組成部分引起的。
3 模糊控制器的結(jié)構(gòu)分析
根據(jù)常規(guī)控制理論解析分析模糊控制器的結(jié)構(gòu),是發(fā)展模糊控制技術(shù)的一條重要途徑。這對(duì)于模糊控制器的實(shí)際應(yīng)用具有一定的指導(dǎo)意義,因?yàn)槟:刂萍夹g(shù)中許多重要而難度較大的方面(如分析、設(shè)計(jì)、穩(wěn)定性和魯棒性),可用(非線性)控制理論中現(xiàn)有的數(shù)學(xué)技術(shù)有效地加以研究。目前,許多學(xué)者已很好地分析了 Mamdani模糊控制器和TS模糊控制器,包括一些較復(fù)雜的模糊控制器的解析結(jié)構(gòu)。我們從以下幾方面來(lái)展開(kāi)討論。
3.1 模糊控制器是非線性PID控制器
線性離散PID的表達(dá)式為
(1)
許多模糊控制器都能表示成(1)式的形式,只是控制器的增益隨其輸入的變化而變化,因此說(shuō),模糊控制器是非線性PID控制器。Ying[1]最先提出模糊PID控制器的解析結(jié)構(gòu),并證明了采用兩個(gè)線性輸入模糊集、四條模糊規(guī)則、Zadeh模糊邏輯AND和OR操作及重心解模糊器的最簡(jiǎn)單的 Mamdani模糊控制器是非線性PI控制器;接著又進(jìn)一步將其結(jié)果推廣到采用其它推理方法(如Mamdani最小、Larsen乘積、drastic乘積和有界乘積等)的各類Mamdani模糊控制器[2]。更復(fù)雜的情況是采用兩個(gè)輸入變量、多個(gè)對(duì)稱或非對(duì)稱的三角形輸入模糊集、線性控制規(guī)則、均勻分布的獨(dú)點(diǎn)輸出模糊集、不同推理方法和重心解模糊器的Mamdani模糊控制器,已被證明是一個(gè)全局的兩維多值繼電控制器和一個(gè)局部的非線性PI控制器之和[3,4]。這些結(jié)果被一般化到采用非線性控制規(guī)則的單輸入單輸出[5]和兩輸入兩輸出模糊控制器[6]。其它一些類似的結(jié)果見(jiàn)文獻(xiàn)[7-10]。
人們已研究了基本Mamdani模糊控制器的各種擴(kuò)展設(shè)計(jì)及其結(jié)構(gòu)分析,證明了模糊PID[11-13]、模糊PI+D[14]、模糊PD+I[15]、串行模糊PI+PD[16]、并行模糊PI+PD[17]和模糊(PI+D)2[18]控制器都是非線性PID控制器,并推導(dǎo)出其非線性增益的明晰表達(dá)式。另外,一種基于開(kāi)-關(guān)控制技術(shù)的時(shí)變模糊控制器的結(jié)構(gòu)與非線性PD控制器解析地聯(lián)系起來(lái),并證明它是一種帶有非線性控制偏量的非線性PD控制器[19]。
最近,我們開(kāi)始討論TS模糊控制器的解析結(jié)構(gòu),將一種簡(jiǎn)單的2×2模糊規(guī)則集結(jié)構(gòu)用于分析一類TS模糊PI(或PD)控制器的非線性[20]。推導(dǎo)了TS模糊PI(或PD)控制器增益的明晰表達(dá)式,并研究了其增益變化的范圍和幾何形狀等特性。TS模糊PI(或PD)控制器實(shí)際上是一種非線性 PI(或PD)控制器。上述簡(jiǎn)單的TS模糊PI(或PD)控制器結(jié)構(gòu)的解析結(jié)果還被推廣到更典型和復(fù)雜的各類TS模糊控制器[21-23]。這些TS模糊控制器由三個(gè)或多個(gè)梯形(或任意)輸入模糊集、帶有線性后項(xiàng)的TS模糊規(guī)則、Zadeh模糊邏輯AND操作和重心解模糊器構(gòu)成。
模糊控制器與線性PID控制器相聯(lián)系的解析結(jié)構(gòu),一方面揭示了模糊控制器在非線性、時(shí)變和純滯后等系統(tǒng)的應(yīng)用中比線性PID控制器優(yōu)越的機(jī)理,同時(shí)也提供了根據(jù)它們之間的增益關(guān)系來(lái)解析設(shè)計(jì)模糊控制系統(tǒng)并確保其穩(wěn)定性的一種方法。
3.2 模糊控制器作為滑模變結(jié)構(gòu)控制器
對(duì)于一大類非線性系統(tǒng),模糊控制器是由與狀態(tài)x(n)和(n)相對(duì)應(yīng)的偏差e(n)和偏差變化率
(n)確定的相平面來(lái)設(shè)計(jì)的。對(duì)于二維模糊控制器,一般設(shè)計(jì)方法是通過(guò)一個(gè)開(kāi)關(guān)線將相平面劃分為兩個(gè)半平面。其開(kāi)關(guān)函數(shù)定義為
(2)
二維控制規(guī)則集的零對(duì)角線上的控制輸入為零。在工作原理上,模糊控制器類似于滑模變結(jié)構(gòu)控制器[10,24-28]。Wu和Liu將模糊控制表示成一類變結(jié)構(gòu)控制,滑模用于確定模糊控制規(guī)則中的最好參數(shù)值[29]。若采用變結(jié)構(gòu)類型的規(guī)則集,則模糊控制器具有語(yǔ)義和定量?jī)煞矫娴淖兘Y(jié)構(gòu)特性,對(duì)于二維和三維模糊控制器,已推導(dǎo)出其具體的數(shù)學(xué)表達(dá)式[30]。與通常的滑模控制相比,模糊控制具有更強(qiáng)的魯棒性,且模糊控制器的變結(jié)構(gòu)特性有助于人們?cè)O(shè)計(jì)魯棒穩(wěn)定的模糊控制器。
3.3 模糊控制器是非線性增益規(guī)劃控制器
典型和復(fù)雜的各類TS模糊控制器,從結(jié)構(gòu)上已被證明是非線性增益規(guī)劃器[20,21]。這些TS模糊控制器由多個(gè)梯形(或三角形)輸入模糊集、帶有線性后項(xiàng)的TS模糊規(guī)則、Zadeh模糊邏輯AND操作和重心解模糊器構(gòu)成。與常規(guī)增益規(guī)劃器在不同操作點(diǎn)帶有不同常數(shù)增益的線性控制器不同的是:非線性增益規(guī)劃器的增益隨著被控系統(tǒng)的輸出而不斷變化。這些證明不僅彌補(bǔ)了以往一些學(xué)者對(duì)模糊控制器與增益控制器之間關(guān)系的簡(jiǎn)單說(shuō)明,而且從另一方面解釋了模糊控制器在處理非線性問(wèn)題中的有效性。
3.4 模糊控制器與多值繼電控制器的關(guān)系
Kickert和Mamdani揭示了模糊控制器與多值繼電控制器的關(guān)系。一類簡(jiǎn)單的模糊控制器,其輸入-輸出特性具有多值繼電特性,故可看作多值繼電控制器[31]。Ying[3]證明了采用兩個(gè)輸入變量、多個(gè)三角形輸入模糊集、線性控制規(guī)則、均勻分布的獨(dú)點(diǎn)輸出模糊集、不同推理方法和重心解模糊器的Mamdani模糊控制器,是一個(gè)全局的兩維多值繼電控制器和一個(gè)局部的非線性PI控制器之和[3]。這些結(jié)果被一般化到采用非均勻分布的多個(gè)三角形輸入模糊集的SISO、采用非線性控制規(guī)則的SISO和MIMOMamdani模糊控制器[4-6]。根據(jù)模糊控制器與多值繼電控制器的關(guān)系,可用經(jīng)典控制理論中描述函數(shù)的方法來(lái)分析和設(shè)計(jì)模糊控制系統(tǒng),并確保其穩(wěn)定性。
3.5 模糊控制器的極限結(jié)構(gòu)理論
一些學(xué)者注意到,當(dāng)模糊控制規(guī)則的數(shù)目增加到足夠大時(shí),對(duì)被控過(guò)程的影響很小甚至沒(méi)有影響,從而產(chǎn)生了模糊控制器的極限結(jié)構(gòu)理論[32-34]。對(duì)于采用線性控制規(guī)則的一般模糊控制器,隨著控制規(guī)則數(shù)目的增加,其輸出變?yōu)檩斎氲木€性函數(shù)[32]。特別是當(dāng)控制規(guī)則的數(shù)目很大時(shí),對(duì)于兩輸入的模糊控制器,其輸出近似等于線性PI控制器的輸出;對(duì)于三輸入的模糊控制器,其輸出近似等于線性PID控制器的輸出。這些結(jié)構(gòu)被一般化到采用多狀態(tài)變量和多輸出模糊集的模糊控制器[33]。若采用任意函數(shù)f表達(dá)的非線性控制規(guī)則,模糊控制器的解析結(jié)構(gòu)則是一個(gè)全局的依賴于f的非線性控制器和一個(gè)局部的非線性控制器之和,隨著控制規(guī)則的數(shù)目增加到∞,局部非線性控制器也將隨之消失[34]。若采用線性控制規(guī)則,則隨著控制規(guī)則的數(shù)目增加到∞,全局控制器將變成一個(gè)全局近似于線性控制器的多維多值繼電控制器[34]。這些結(jié)果對(duì)于任意模糊邏輯操作、推理方法和解模糊器都適用。極限結(jié)構(gòu)理論說(shuō)明了模糊控制器的模糊集和模糊規(guī)則的數(shù)目并非越多越有效,故在實(shí)際設(shè)計(jì)時(shí),要根據(jù)具體問(wèn)題合適地選擇模糊集和規(guī)則的數(shù)目。
3.6 MIMO模糊控制器的結(jié)構(gòu)分解
工業(yè)過(guò)程中的許多被控對(duì)象都比較復(fù)雜,往往需要采用MIMO模糊控制器。一般MIMOMamdani模糊控制器,總能分解成一個(gè)僅由模糊規(guī)則確定的全局非線性控制器和一個(gè)由模糊控制器所有組成部分確定的局部非線性控制器之和[35]。另外,基于乘積-和-重心推理的N個(gè)變量的模糊系統(tǒng)可分解表達(dá)成N個(gè)單變量模糊子系統(tǒng)的加或乘[36]。
4 模糊控制系統(tǒng)的穩(wěn)定性分析
通過(guò)對(duì)模糊控制系統(tǒng)的穩(wěn)定性分析,能使設(shè)計(jì)者了解設(shè)計(jì)方法的所有步驟。由于模糊控制系統(tǒng)是復(fù)雜的非線性系統(tǒng),且具有各種不同形式,使其穩(wěn)定性分析較難。目前基于經(jīng)典控制理論的模糊控制系統(tǒng)穩(wěn)定性分析方法主要有以下幾種:
4.1 李亞普諾夫方法
基于李亞普諾夫直接方法,許多學(xué)者討論了離散時(shí)間和連續(xù)時(shí)間模糊控制系統(tǒng)的穩(wěn)定性分析和設(shè)計(jì)[37-44]。其中,Tanaka和Sano將[43]中的基本穩(wěn)定性條件推廣到SISO系統(tǒng)的(非)魯棒穩(wěn)定性條件,穩(wěn)定性判據(jù)變?yōu)閺囊唤M李亞普諾夫不等式中尋找一個(gè)共同的李亞普諾夫函數(shù)問(wèn)題[44],由于沒(méi)有一般的有效方法來(lái)解析地尋找一個(gè)公共李亞普諾夫函數(shù),故Tanaka等人[43,44]都沒(méi)有提供尋找李亞普諾夫穩(wěn)定性條件的公共矩陣P的方法。為解決這一問(wèn)題,文獻(xiàn)[45-47]提出用線性矩陣不等式描述穩(wěn)定性條件,還有一些學(xué)者用一組P矩陣代替文獻(xiàn)[43,44]中李亞普諾夫函數(shù)的一個(gè)公共矩陣P,構(gòu)造一個(gè)逐段近似平滑的二次型李亞普諾夫函數(shù),用于穩(wěn)定性分析[37]。每一個(gè)矩陣P僅對(duì)應(yīng)一個(gè)子系統(tǒng),并表明當(dāng)且僅當(dāng)一組合適的Riccati等式有正定對(duì)稱解,且能得到這些解時(shí),模糊控制系統(tǒng)才是全局穩(wěn)定的。
使用李亞普諾夫線性化方法,Ying建立了包括非線性對(duì)象的TS模糊控制系統(tǒng)局部穩(wěn)定性的必要和充分條件[23]。另外,一種在大系統(tǒng)中使用的向量李亞普諾夫直接方法,被用于推導(dǎo)多變量模糊系統(tǒng)的穩(wěn)定性條件[48];李亞普諾夫第二方法被用于判別模糊系統(tǒng)量化因子選擇的穩(wěn)定性[49];波波夫-李亞普諾夫方法被用于研究模糊控制系統(tǒng)的魯棒穩(wěn)定性[50]。
但是,李亞普諾夫的一些穩(wěn)定性條件通常比較保守,即當(dāng)穩(wěn)定性條件不滿足時(shí),控制系統(tǒng)仍是穩(wěn)定的。
4.2 基于滑模變結(jié)構(gòu)系統(tǒng)的方法
由于模糊控制器是采用語(yǔ)義表達(dá),系統(tǒng)設(shè)計(jì)中不易保證模糊控制系統(tǒng)的穩(wěn)定性和魯棒性。而滑模控制有一個(gè)明顯的特點(diǎn),即能處理控制系統(tǒng)的非線性,而且是魯棒控制。因此一些學(xué)者提出設(shè)計(jì)帶有模糊滑模表面的模糊控制器,從而能用李亞普諾夫理論來(lái)獲得閉環(huán)控制系統(tǒng)穩(wěn)定性的證明[25,27,51-54]。Palm和Driankov采用滑模控制的概念分析了增益規(guī)劃的閉環(huán)模糊控制系統(tǒng)的穩(wěn)定性和魯棒性[55]。另有一些學(xué)者用模糊推理來(lái)處理控制系統(tǒng)的非線性和減少控制震顫,使得基于李亞普諾夫方法可保證控制系統(tǒng)的穩(wěn)定性[26]。
基于變結(jié)構(gòu)系統(tǒng)理論,可以得到控制系統(tǒng)的跟蹤精度和模糊控制器的I/O模糊集映射形狀之間的關(guān)系,從而可以解釋模糊控制器的魯棒性和控制性能。文獻(xiàn)[24,56,57]研究了基于變結(jié)構(gòu)控制框架的模糊控制系統(tǒng)的穩(wěn)定性,通過(guò)輸出反饋的模糊變結(jié)構(gòu)控制,并用李亞普諾夫方法證明了閉環(huán)控制系統(tǒng)是全局有界輸入有界輸出穩(wěn)定的[58]。若使用變結(jié)構(gòu)控制類型的模糊規(guī)則集,模糊控制器從語(yǔ)義和定量上可顯示出變結(jié)構(gòu)的特性。為便于李亞普諾夫穩(wěn)定性判據(jù)能指導(dǎo)設(shè)計(jì)和調(diào)整模糊控制器,文獻(xiàn)[30]推導(dǎo)出模糊控制器的具體數(shù)學(xué)表達(dá)式。
4.3 小增益理論方法
小增益理論是非線性控制理論中用于連續(xù)系統(tǒng)和離散系統(tǒng)的一個(gè)非常一般的工具。基于模糊控制器的解析結(jié)構(gòu),結(jié)合對(duì)象和模糊控制器的非線性本質(zhì),一些學(xué)者采用小增益理論,建立了Mamdani模糊PI[59]、PD[9]、PID[14]及一類簡(jiǎn)單和典型的TS[20,21]模糊控制系統(tǒng)的有界輸入有界輸出(BIBO)穩(wěn)定性的充分條件;并證明了用非線性模糊PI控制器替代常規(guī)PI控制器,不影響平衡點(diǎn)處的穩(wěn)定性。因?yàn)檫@些穩(wěn)定性的結(jié)果是基于控制器的結(jié)構(gòu),所以比那些模糊控制器解析結(jié)構(gòu)未知的穩(wěn)定性結(jié)果更具不保守性。
4.4 相平面分析方法
使用相平面分析技術(shù)有助于描述和理解低階模糊控制系統(tǒng)的動(dòng)態(tài)行為,故相平面分析方法被用于分析一些模糊系統(tǒng)的穩(wěn)定性[60-62],但這種技術(shù)只限于二維規(guī)則結(jié)構(gòu)的模糊系統(tǒng)。
4.5 描述函數(shù)方法
描述函數(shù)方法可用于預(yù)測(cè)極限環(huán)的存在、頻率、幅度和穩(wěn)定性。通過(guò)建立模糊控制器與多值繼電控制器的關(guān)系,描述函數(shù)方法可用于分析模糊控制系統(tǒng)的穩(wěn)定性[31]。另外,指數(shù)輸入的描述函數(shù)技術(shù)也能用于調(diào)查模糊控制系統(tǒng)的暫態(tài)響應(yīng)[63]。雖然描述函數(shù)方法能用于SISO和MISO模糊控制器以及某些非線性對(duì)象模型,但不能用于三輸入及以上的模糊控制器。由于這種方法一般都用于非線性系統(tǒng)中確定周期振蕩的存在性,因此只是一種近似方法。
4.6 圓穩(wěn)定性判據(jù)方法
圓判據(jù)可用于分析和再設(shè)計(jì)一個(gè)模糊控制系統(tǒng)。使用扇區(qū)有界非線性的概念,一般化的奈魁斯特(圓)穩(wěn)定性判據(jù)可用于分析SISO和MIMO模糊系統(tǒng)的穩(wěn)定性[62],并且擴(kuò)展圓判據(jù)可用于推導(dǎo)一類簡(jiǎn)單模糊PI控制系統(tǒng)穩(wěn)定性的充分條件[63]。由于圓判據(jù)要求比較嚴(yán)格,F(xiàn)urutani提出一種移動(dòng)的波波夫判據(jù),用于分析模糊控制系統(tǒng)的穩(wěn)定性。當(dāng)此判據(jù)中參數(shù)θ設(shè)為零時(shí),該判據(jù)與圓判據(jù)一致[64]。
4.7 其它方法
魯棒控制技術(shù)(如向量穩(wěn)定化、H∞控制理論和線性矩陣不等式)被用于推導(dǎo)帶有不確定性的TS模糊控制系統(tǒng)[46]。另外,一般化能量概念[65]、胞胞映射概念[66]、幾何狀態(tài)空間方法[67]、Hurwitz穩(wěn)定性條件方法[68]、絕對(duì)穩(wěn)定判據(jù)方法[69]、基于Kudrewicz理論方法[70]及擴(kuò)展Haddad方法[71]等,都已被用于分析模糊控制系統(tǒng)的穩(wěn)定性。
從模糊控制系統(tǒng)穩(wěn)定性分析的結(jié)果可知,最一般的方法是李亞普諾夫方法,但比較保守,圓判據(jù)則更保守。對(duì)于其它一些典型的模糊控制系統(tǒng)穩(wěn)定性分析方法,要求對(duì)象模型確定且應(yīng)滿足一些連續(xù)性限制。如描述函數(shù)分析極限環(huán),本質(zhì)上要求一個(gè)線性時(shí)不變對(duì)象或者具有某一特定數(shù)學(xué)形式的對(duì)象,使得非線性在循環(huán)中有界于一個(gè)非線性元件。
5 結(jié)論和展望
通過(guò)對(duì)模糊控制器結(jié)構(gòu)的解析分析,可以揭示模糊控制器的本質(zhì)和工作機(jī)理,建立模糊控制器與經(jīng)典控制器之間的關(guān)系,而穩(wěn)定性分析結(jié)果可用于指導(dǎo)模糊控制系統(tǒng)的分析和設(shè)計(jì)。雖然目前已得到許多解析結(jié)果,但與經(jīng)典控制理論相比,解析模糊控制理論顯得仍不成熟。許多經(jīng)典控制理論和概念有待于進(jìn)一步推廣到模糊控制系統(tǒng)的分析和設(shè)計(jì):
1)在解析結(jié)構(gòu)分析方面,TS模糊控制器的結(jié)構(gòu)分析需推廣到更一般的情況及MIMO控制器;一般Mamdani和TS模糊控制器的極限結(jié)構(gòu)理論需進(jìn)一步討論;同時(shí),復(fù)雜系統(tǒng)模糊控制的解析理論有待進(jìn)一步深入。如:分層遞階模糊控制系統(tǒng)可解決多變量模糊控制器的維數(shù)災(zāi)問(wèn)題,且已被證明是萬(wàn)能控制器[72],因此,有必要對(duì)這類控制器的結(jié)構(gòu)進(jìn)行解析分析。
2)模糊控制穩(wěn)定性分析結(jié)果尚較缺乏。目前的方法多少都受到一些限制,更一般化的穩(wěn)定性判據(jù),尤其是基于模糊控制器解析結(jié)構(gòu)的易理解且具廣泛應(yīng)用性的方法應(yīng)加以研究。
3)其它如模糊控制系統(tǒng)的魯棒性、能觀性和能控性等同樣有待于深入研究和進(jìn)一步發(fā)展。
4)需開(kāi)發(fā)基于解析理論的模糊系統(tǒng)計(jì)算機(jī)輔助設(shè)計(jì)軟件。鑒于目前許多模糊系統(tǒng)開(kāi)發(fā)軟件都缺乏解析能力,我們正在研制一種能用于解析分析、設(shè)計(jì)和開(kāi)發(fā)模糊系統(tǒng)的軟件包。
總之,成熟且豐富的經(jīng)典控制理論與模糊控制相結(jié)合,將有助于更好地分析和設(shè)計(jì)模糊控制系統(tǒng),從而奠定模糊控制理論基礎(chǔ),并使21世紀(jì)這一人類智能的核心技術(shù)更具生命力。
相關(guān)文章
- 2021-09-08BIM技術(shù)叢書Revit軟件應(yīng)用系列Autodesk Revit族詳解 [
- 2021-09-08全國(guó)專業(yè)技術(shù)人員計(jì)算機(jī)應(yīng)用能力考試用書 AutoCAD2004
- 2021-09-08EXCEL在工作中的應(yīng)用 制表、數(shù)據(jù)處理及宏應(yīng)用PDF下載
- 2021-08-30從零開(kāi)始AutoCAD 2014中文版機(jī)械制圖基礎(chǔ)培訓(xùn)教程 [李
- 2021-08-30從零開(kāi)始AutoCAD 2014中文版建筑制圖基礎(chǔ)培訓(xùn)教程 [朱
- 2021-08-30電氣CAD實(shí)例教程AutoCAD 2010中文版 [左昉 等編著] 20
- 2021-08-30電影風(fēng)暴2:Maya影像實(shí)拍與三維合成攻略PDF下載
- 2021-08-30高等院校藝術(shù)設(shè)計(jì)案例教程中文版AutoCAD 建筑設(shè)計(jì)案例
- 2021-08-29環(huán)境藝術(shù)制圖AutoCAD [徐幼光 編著] 2013年P(guān)DF下載
- 2021-08-29機(jī)械A(chǔ)utoCAD 項(xiàng)目教程 第3版 [繆希偉 主編] 2012年P(guān)DF